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range of variation of the wave numbers as large as desired. 
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INVARIANT SOLUTIONS OF THE EQUATIONS OF THE NON-ISOTHERMAL STATIONARY FLOW 

OF A VISCOUS FLUID IN TUBES* 

R.N. BAKHTIZIN and R.K. MUKHAMEDSHIN 

The group properties /l/ of a system of equations describing flows in 
tubes of fluids the viscosity of which depends on the temperature are 
investigated for large Peclet numbers. It is shown that for exponential 
and power dependences there is an extension of the main group of 
transformations. For these cases, invariant solutions which have a 
physical meaning are considered. 

The equations describing the motion of a viscous fluid in a cylindrical 
tube may be written, in dimensionless form as follows for 641,Pe2i 
/2/: 
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Here 

where x is a longitudinal coordinate, r is the distance from the tube axis, r0 is the radius 
of the tube, t is the temperature, V, and V, are (respectively) the longitudinal and the 
radial components of the velocity, qis the viscosity of the fluid, l is the length of the 
tube, P is the pressure, tO, Q and V, are the characteristic values of the temperature, 
viscosity and velocity and Pe is the Peclet number. 

It follows from the first equation of (1) that aplaz is some function of z, which we 
will denote by g(z). Thus, the second equation of (1) may be integrated once with respect to 
R with the natural symmetry condition a~laRl,_,= 0. Introducing the notation f(T) = 6~P&?, 
Eq.(l) may be replaced by the following 

ch/aR = Rf (T) g (z) (3) 

We carry out the group classification /l/ of system i2) (3). 
For an arbitrary form of the function f, the system admits of an infinitesimal operator: 

An 
from an 

1) 

2) 

3) 

extension of this algebra is obtained for the following specifications of f(T) apart 
equivalence transformations /l/: 
f (T)G con&; additional basis operators 

x, = alaT, x, = TalaT 

P(T)= I’? additional operator 

x, = YRalaR - 4TaiaT + zyualau 

f(T) = eT; additional operator 

x6 = RaIaR - 4alaT + 2uala21 

We consider a number of invariant solutions corresponding to these operators, which have a 
physical interpretation. 

For 
j(T) = eeT, g (z) = -2poe-ez, p. = const 

an invariant solution of the operator x,-x0 has the form 

V=%(R), u=%(R), T=z+cp,,(R) 

'PI (i = 1, 2, 3) satisfy a system of ordinary differential equations, the solution of which for 
the boundary conditions 

VlR,1 = ula,1 = 0 

maybe written in the form 

I& = 0, Vk = @) + el#) + 0 (es), k = 2, 3 
1 

$') = pO(l- RP), ,$'= -2p, 5 R@dR 

R 

For 
f (T) = eeT, g (2) = -2poP, p. = const 

an invariant solution of the operator X,-X8 has the form 

u= 'PI CR), u = q,(R), T= lnz.+ Q(R) 

where the functions p,(i= i,2,3) satisfy the system of ordinary differential equations 
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the solution of which 

I& = et(O) + ef@ + 0 (E"), i = i, 2, 3 

qp= Po(@/4_--Ry2$, q@'=p*(l--rrq, e'- 

F (R) = oxp ((p&) (is* - R’i4)) 

describes a flow in a tube with permeable walls for a constant rate of injection (suction) 
"n,_l = -p&. 

For arbitrary functions f and $7 an invariant solution of the operator X, may be written 
in the form 

where AI(i= i,2,3) are arbitrary constants, which may be adjusted so that 

cp (8,) = 0. B1> 0, i-i,2 

This solution corresponds to a flow in an annular channel, the radius of the walls of 
which varies as Rf = (&/g)"~. Since g(a) is an arbitrary function and the initial systen of 
equations is invariant under shifts in 2, we may choose a function B (4 and a range of 
variation of s such that Rt is practically constant. 
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DIFFRACTION OF SHEAR WAVES BY AN ELASTIC CYLINDRICAL INCLUSION 

WITH TWO CUTS ON THE PHASE BOUNDARY* 

K.P. BELYAYEV 

A method /l/ similar to that used in the case of one cut /2/ is used to 
determine the stress and deformation at the boundary of a cylindrical 
inclusion with two cuts placed on the contact contour. .The external 
perturbation varies sinusoidally and is a plane wave in an isotropic 
medium. At the boundary pf the inclusion the shear wave is reflected as 
a shear wave. 

1. Pormtation of the probtsm. Using a cylindrical system of coordinates we consider 
the effect of a plane shear wave on an elastic inclusion in the form of a circular cylinder 
r<a.a=(---m, OQ). bonded elastically along the edge r==. 8E6)=(al, n - a*) u (n + a,,2n -a,), If 
(--m,=) where the area r= a, 8 E Go, (Go = I--a,,aJ U In - cg,s + a& corresponds to two cuts 
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